skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kwon, Suk Bum"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Duan, Xuexin; Fu, Richard; Guan, Weihua; Guan, Yingchun; Sun, Shuhui (Ed.)
    With the growing demand for the fabrication of microminiaturized components, a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant. Single-crystal sapphire stands out as a promising material for microelectronic components, ultra-precision lenses, and semiconductor structures owing to its exceptional characteristics, such as high hardness, chemical stability, and optical properties. This paper focuses on understanding the mechanism responsible for generating anisotropic crack morphologies along various cutting orientations on four crystal planes (C-, R-, A-, and M-planes) of sapphire during ultra-precision orthogonal cutting. By employing a scanning electric microscope to examine the machined surfaces, the crack morphologies can be categorized into three distinct types on the basis of their distinctive features: layered, sculptured, and lateral. To understand the mechanism determining crack morphology, visualized parameters related to the plastic deformation and cleavage fracture parameters are utilized. These parameters provide insight into both the likelihood and direction of plastic deformation and fracture system activations. Analysis of the results shows that the formation of crack morphology is predominantly influenced by the directionality of crystallographic fracture system activation and by the interplay between fracture and plastic deformation system activations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Sinnott, Susan (Ed.)
    Single crystalline sapphire (-) possesses superior mechanical, thermal, chemical, and optical properties over a wide range of temperatures and pressure conditions, allowing it for a broad spectrum of industrial applications. For the past few decades, research has aimed at comprehensive understanding of its plastic deformation mechanisms under mechanical loading. In this study, we have employed molecular dynamics (MD) simulations to study rhombohedral twinning of sapphire, which is of critical importance in understanding the plastic deformation of sapphire as one of most commonly observed deformation modes. Since the critical resolved shear stress (CRSS) plays a pivotal role in describing the activation of slip systems, it is adopted in this study as the key parameter for analysis. The CRSS is calculated during the uniaxial compression test of a cubic sapphire crystal, oriented to exclusively activate rhombohedral twinning deformation, under simulation conditions such as temperature, strain rate, and system size. Furthermore, a theoretical model of CRSS is constructed based on theories of thermal activation processes, then empirically fitted to CRSS data gathered from the MD simulations. This model accurately captures the relationships between CRSS and external parameters including temperature, strain rate, and system size and shows excellent agreements with the simulation results. 
    more » « less
  3. In this paper, material deformation during ultra-precision machining (UPM) on the C-, R-, and A-planes of sapphire was investigated using the slip/fracture activation model where the likelihood of activation of individual plastic deformation and fracture systems on different crystallographic planes was calculated. The stress data obtained from molecular dynamics (MD) simulations were utilized, and the slip/fracture activation model was developed by incorporating the principal stresses in calculating the plastic deformation and fracture cleavage parameters. The analysis methodology was applied to study material deformation along various cutting orientations in sapphire. The stress field at crack initiation during UPM on C-, R-, and A-planes of sapphire was calculated using molecular dynamics (MD) simulations. An equation describing the relationship between crack initiation and its triggering parameters was formulated considering the systems’ plastic deformation and cleavage fractures. The model can qualitatively predict the crack initiations for various cutting orientations. The proposed model was verified through ultra-precision orthogonal plunge cut experiments along the same cutting orientations as in the MD simulations. 
    more » « less
  4. null (Ed.)